Методы Оптимизации, Теормин
Материал из eSyr's wiki.
(→Следствия систем линейных неравенств. Афинная лемма Фаркаша (без доказательства)) |
(→Лемма Фаркаша о неразрешимости) |
||
Строка 179: | Строка 179: | ||
=== Лемма Фаркаша о неразрешимости === | === Лемма Фаркаша о неразрешимости === | ||
- | + | '''Лемма'''. | |
+ | Система динейный неравенсив <math>Ax <= b</math> неразрешима тогда и только тогда, когда разрешима система: | ||
+ | |||
+ | <math>Вставьте сюда формулу</math> | ||
== Элементы математического программирования == | == Элементы математического программирования == |
Версия 05:39, 8 июня 2009
Введение в теорию сложности
Индивидуальная и массовая задачи, кодировка задачи, алгоритм решения массовой задачи, временная сложность алгоритма.
Массовая задача Π:
- список свободных параметров;
- формулировка свойств, которым должно удовлетворять решение задачи.
Π есть множество индивидуальных задач . Индивидуальная задача получается, если всем параметрам присвоить конкретные значения.
Пусть Σ - конечный алфавит, а Σ * - множество слов в этом алфавите. Отображение e: называется кодировкой задачи П.
Алгоритм A решает массовую задачу Π, если для любой индивидуальной задачи :
- A применим к I, то есть останавливается за конечное число шагов
- A дает решение I
Кодировка задачи P -- такое отобраение , обладающее следующими свойствами:
- Возможность однозначно декодировать, то есть у двух различных ИЗ не может быть одинаковых кодировок.
- e,e − 1 -- полиномиально вычислимы
- Кодировка не избыточна, то есть для любой другой кодировки e1, удовлетворяющей 1 и 2 условиям справедливо:
Язык массовой задачи -- это множество правильных слов, то есть слов, соответствующих ИЗ, имеющим положительный ответ(подразумевается задача распознавания):
Язык алгоритма -- множество слов, принимаемых A, то есть таких, на которых алгоритм останавливается в состоянии qY, что соответсвует "да":
Алгоритм A решает массовую задачу Π, с кодировкой e, если L(e,Π) = L(A)
tA(s) -- число шагов алгоритма A для входа .
Временная сложность .
Задачи распознавания свойств. Классы P и NP.
Задача распознавания свойств -- массовая задача, предполагающая ответ "да" или "нет", в качестве своего решения.
- D(Π) -- множество всех возможных значений параметров массовой задачи.
- Y(Π) -- множество всех индивидуальных задач, ответом на которые является "да".
Класс полиномиально разрешимых задач (P) -- это такие задачи, временной сложность алгоритма решения которых ограниченна полиномом:
- такой, что A решает массовую задачу Π с кодировкой e
- -- полином такой, что
Примеры неполиномиальных задач:
- алгоритмически неразрешимые задачи: такая, что A не применим к I, например,
- 10-я проблема Гильберта: по данному многочлену g с целыми коэффициентами выяснить, имеет ли уравнение g = 0 целочисленное решение
- задачи, для которых длина записи выхода превышает любой наперед заданный полином от длины входа
- найти все маршруты в задаче коммивояжёра
Класс недетерменированно полиномиальных задач (NP) -- это такие задачи, для которых существует алгоритм решения на недерменированной машине Тьюринга:
- для НДМТ такой, что решает массовую задачу Π с кодировкой e
- -- полином такой, что
Теорема об экспоненциальной временной оценке для задач из класса NP.
Для любой существует ДМТ A, решающая ее с не более чем экспоненциальной временной сложностью: .
Класс co-NP. Пример задачи, допускающей хорошую характеризацию. Доказательство утверждения о взаимоотношении классов NPC и co-NP.
Дополнительная задача к массовой задаче Π -- задача, получаемая из Π путем введения альтернативного вопроса. То есть если в Π спрашиваем "верно ли x", то в спрашиваем "верно ли, что "
Класс co-P --
- co-P = P.
Класс co-NP -- .
- co-NP = NP пока не удалось ни доказать, ни опровергнуть.
Массовая задача Π допускает хорошую характеристику, если
- пример такой задачи -- это задача определения простоты числа.
Массовая задача Π' с кодировкой e' полиномиально сводится к задаче Π с кодировкой e, если любая индивидуальная задача может быть сведена за полиномиальное от её длины время к некоторой задаче с сохранением ответа.
Массовая задача Π называется NP-полной (универсальной), если
- принадлежит классу NP:
- любая задача из NP полиномиально сводится к Π:
Класс NPC (NP-complete) -- множество всех NP-полных задач.
Критерий NP-полноты. Д-во NP-полноты задачи ЦЛН
Д-во NP-полноты задачи 3-выполнимость. NP-трудные задачи
Взаимоотношение классов P, NP и NPC, NP и co-NP. Класс PSPACE
Гипотеза.
Гипотеза. Если для некоторой NP-полной задачи Π дополнительная к ней задача , то NP = co-NP
Класс PSPACE массовых задач -- класс алгоритмов, требующих не более, чем полиномиальной памяти.
Гипотеза. . При этом NP-полные, NP-трудные, NP-эквивалентные задачи
Псевдополиномиальные алгоритмы. Пример для задачи о рюкзаке
Псевдополиномиальный алгоритм - полиномиальный алгоритм, проявляющий экспоненциальный характер только при очень больших значениях числовых параметров.
Пусть M(I) -- некоторая функция, задающая значение числового параметра индивидуальной задачи I. Если таких параметров несколько, в качестве M(I) можно взять или максимальное, или среднее значение, а если задача вовсе не имеет числовых параметров (например, раскраска графа, шахматы и т.п.), то M(I) = 0. Алгоритм называется псевдополиномиальным, если он имеет оценку трудоемкости Tmax(I) = O(p( | I | ,M(I))), где -- некоторый полином от двух переменных.
Сильная NP-полнота. Теорема о связи сильной NP-полноты задачи с существованием псевдополиномиального алгоритма ее решения
Полиномиальное сужение массовой задачи Π -- множество таких индивидуальных задач I, числовые параметры которых не превосходят полинома от длины входа:
Массовая задача Π называется сильно NP-полной, если её полиномиальное сужение является NP-полным.
- задача выполнимости, задача 3-выполнимости -- совпадают со своими полиномиальными сужениями
- задача булевых линейных неравенств
- задача о целочисленном решении системы линейных уравнений
- задача комивояжа
Определение -приближенного алгоритма и полностью полиномиальной приближенной схемы (ПППС). Связь между существованием ПППС и псевдополиномиальностью
Теорема об отсутствии ПППС для задач оптимизации, соответствующих сильно NP-полным задачам распознавания
Основы линейного программирования
Определение озЛП. Принцип граничных решений. Алгебраическая и битовая сложность ЛП. Результаты о сложности для задач, близких к ЛП
ЛП (линейное программирование) -- теория, приложения и методы решения системы линейных неравенств с конечным числом неизвестных : , существует ли , удовлетворяющий данной системе линейных неравентсв
озЛП (основная задача линейного программирования) : найти такой вектор -- решение задачи линейного программирования , максимизирующее линейную функцию
Утверждение (принцип граничных решений). Если озЛП имеет решение, то найдется такая подматрица AI матрицы A, что любое решение системы уравнений AIx = bI реализует максимум c(x).
Алгебраическая сложность -- количество арифметических операций.
Битовая сложность -- количество операций с битами. Битовая сложность задач ЛП, ЛН полиномиальна.
Вопрос о существовании алгебраически-полиномиального алгоритма для ЛП остается открытым.
Теорема о границах решений задач ЛП с целыми коэффициентами
Δ(D) = max | det(D1) | , где D1 -- квадратная подматрица D
Если задача озЛп размерности (n, m) с целыми коэффициентами разрешима, то у нее существует рацональное рашение x * в шаре: и
Теорема о мере несовместности систем линейных неравенств с целыми коэффициентами
-- -приближенное решение системы ЛН, если
- в строчной записи:
- в матричной записи: , где e -- вектор-столбец из единиц
Теорема. Если система линейных неравенств имеет приближенное решение (), то эта система разрешима, то есть имеет точное решение.
Описание метода эллипсоидов
Решает задачу линейного программирования за полиномиальное число шагов.
Суть алгоритма в том, чтобы окружить данный многогранник эллипсоидом, а затем постепенно сжимать этот эллипсоид; оказывается, на каждом этапе объем эллипсоида уменьшается в константное число раз.
Лемма1. Если система совместна,то в шаре найдется ее решение.
Таким образом получаем, что если система совместна, то эта лемма позволяет локализовать хотбы бы 1 из ее решений
Введем функцию невязки в точке x -- t(x) = maxi((Ax)i − bi). Точка x0 = 0 -- это центр шара E0. Если , то x0 -- решение. Если это не так, то возмемем s: , значит x0 не удовлетворяет s-ому неравенству системы. Всякий вектор x, удовлетворяющий неравенству s должен лежать в полупространстве . Пересечение этого полупространства с нашей сферой дают полуэлипсоид. Вокруг получившегося полуэлипсоида описываем новую сферу и повторяем алгоритм заново.
Теория двойственности ЛП
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче.
http://www.mathelp.spb.ru/book1/lprog5.htm
Идея метода Кармаркара
http://logic.pdmi.ras.ru/~yura/modern/02seminar.pdf
Следствия систем линейных неравенств. Афинная лемма Фаркаша (без доказательства)
Определение. является следствием разрешимой системы ЛН , если для всех x, для которых выполняется (2), выполняется и (1).
Афинная лемма Фаракша. Линейное неравентсво (1) является следствием разрешимой в вещественный переменных ЛН (2), тогда и только тогда, когда существует :
http://imcs.dvgu.ru/lib/nurmi/finmath/node41.html
Лемма Фаркаша о неразрешимости
Лемма. Система динейный неравенсив Ax < = b неразрешима тогда и только тогда, когда разрешима система:
Невозможно разобрать выражение (неизвестная ошибка): Вставьте сюда формулу
Элементы математического программирования
Способы решения переборных задач
Неотсортировано
- Формула градиентного метода в задаче безусловной минимизации
- Сведение озЛП к однородной системе уравнений с огрничением x>0
- Формула градиентного метода в задаче безусловной минимизации
- Формула метода Ньютона в задаче безусловной минимизации
- Идея метода штрафов
- Геометрическое описание симплекс-метода
- Методы глобальной минимизации
- Полиномиальный алгоритм округления ?1-приближенного решения системы линейных неравенств
- Идея метода эллипсоидов
- Идея метода Ньютона
- Теорема оптимальности для разложимых функций
- Идея метода ветвей и границ. Пример для задачи БЛП
- Метод ветвей и границ для ЦЛП. Различные стратегии метода
- Метод ветвей и границ для глобальной минимизации Липшицевых функций
- Понятие о временной сложности алгоритмов
- Понятие о недетерминированно-полиномиальных задачах
- Метод динамического программирования для БЛП с неотрицательными коэффициентами
- Применение метода динамического программирования для понижения размерности разложимой оптимизационной задачи
- Оценка сложности метода эллипсоидов ?2-приближенного решения озЛП